3,690 research outputs found

    Utilising the radiative transfer equation in quantitative photoacoustic tomography

    Get PDF
    Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating optical parameters inside tissue from photoacoustic images. This optical parameter estimation problem is an ill-posed inverse problem, and thus it is sensitive to measurement and modelling errors. Therefore, light propagation in quantitative photoacoustic tomography needs to be accurately modelled. A widely accepted model for light propagation in biological tissue is the radiative transfer equation. In this work, the radiative transfer equation is utilised in quantitative photoacoustic tomography. Estimating absorption and scattering distributions in quantitative photoacoustic tomography using various illuminations is investigated

    j-Wave: An open-source differentiable wave simulator

    Get PDF
    We present an open-source differentiable acoustic simulator, j-Wave, which can solve time-varying and time-harmonic acoustic problems. It supports automatic differentiation, which is a program transformation technique that has many applications, especially in machine learning and scientific computing. j-Wave is composed of modular components that can be easily customized and reused. At the same time, it is compatible with some of the most popular machine learning libraries, such as JAX and TensorFlow. The accuracy of the simulation results for known configurations is evaluated against the widely used k-Wave toolbox and a cohort of acoustic simulation software. j-Wave is available from https://github.com/ucl-bug/jwave

    Estimation and uncertainty quantification of optical properties directly from the photoacoustic time series

    Get PDF
    Quantitative photoacoustic tomography seeks to estimate the optical parameters of a target given photoacoustic measurements as a data. Conventionally the problem is split into two steps: 1) the acoustical inverse problem of estimating the acoustic initial pressure distribution from the acoustical time series data; 2) the optical inverse problem of estimating the optical absorption and scattering from the initial pressure distributions. In this work, an approach for estimating the optical absorption and scattering directly from the acoustical time series is investigated with simulations. The work combines a homogeneous acoustical forward model, based on the Green's function solution of the wave equation, and a finite element method based diffusion approximation model of light propagation into a single forward model. This model maps the optical parameters of interest into a time domain signal. The model is used with a Bayesian approach to ill-posed inverse problems to form estimates of the posterior distributions for the parameters of interest. In addition to being able to provide point estimates of the parameters of interest, i.e. reconstruct the absorption and scattering distributions, the approach can be used to derive information on the uncertainty associated with the estimates

    Quantitative photoacoustic tomography using illuminations from a single direction.

    Get PDF
    Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating optical parameters inside tissues from photoacoustic images, which are formed by combining optical information and ultrasonic propagation. This optical parameter estimation problem is ill-posed and needs to be approached within the framework of inverse problems. It has been shown that, in general, estimating the spatial distribution of more than one optical parameter is a nonunique problem unless more than one illumination pattern is used. Generally, this is overcome by illuminating the target from various directions. However, in some cases, for example when thick samples are investigated, illuminating the target from different directions may not be possible. In this work, the use of spatially modulated illumination patterns at one side of the target is investigated with simulations. The results show that the spatially modulated illumination patterns from a single direction could be used to provide multiple illuminations for quantitative photoacoustic tomography. Furthermore, the results show that the approach can be used to distinguish absorption and scattering inclusions located near the surface of the target. However, when compared to a full multidirection illumination setup, the approach cannot be used to image as deep inside tissues

    Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    Get PDF
    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic e↵ect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the di↵usion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gr¨uneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach

    Image reconstruction with noise and error modelling in quantitative photoacoustic tomography

    Get PDF
    Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating the optical parameters inside tissue from photoacoustic images. The method proceeds from photoacoustic tomography by taking the estimated initial pressure distributions as data and estimating the absolute values of the optical parameters. Therefore, both the data and the noise of the second (optical) inverse problem are affected by the method applied to solve the first (acoustic) inverse problem. In this work, the Bayesian approach for quantitative photoacoustic tomography is taken. Modelling of noise and errors and incorporating their statistics into the solution of the inverse problem are investigated

    Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report.

    Get PDF
    BACKGROUND: Zoonotic malaria caused by Plasmodium knowlesi is an important, but newly recognized, human pathogen. For the first time, post-mortem findings from a fatal case of knowlesi malaria are reported here. CASE PRESENTATION: A formerly healthy 40 year-old male became symptomatic 10 days after spending time in the jungle of North Borneo. Four days later, he presented to hospital in a state of collapse and died within two hours. He was hyponatraemic and had elevated blood urea, potassium, lactate dehydrogenase and amino transferase values; he was also thrombocytopenic and eosinophilic. Dengue haemorrhagic shock was suspected and a post-mortem examination performed. Investigations for dengue virus were negative. Blood for malaria parasites indicated hyperparasitaemia and single species P. knowlesi infection was confirmed by nested-PCR. Macroscopic pathology of the brain and endocardium showed multiple petechial haemorrhages, the liver and spleen were enlarged and lungs had features consistent with ARDS. Microscopic pathology showed sequestration of pigmented parasitized red blood cells in the vessels of the cerebrum, cerebellum, heart and kidney without evidence of chronic inflammatory reaction in the brain or any other organ examined. Brain sections were negative for intracellular adhesion molecule-1. The spleen and liver had abundant pigment containing macrophages and parasitized red blood cells. The kidney had evidence of acute tubular necrosis and endothelial cells in heart sections were prominent. CONCLUSIONS: The overall picture in this case was one of systemic malaria infection that fit the WHO classification for severe malaria. Post-mortem findings in this case were unexpectedly similar to those that define fatal falciparum malaria, including cerebral pathology. There were important differences including the absence of coma despite petechial haemorrhages and parasite sequestration in the brain. These results suggest that further study of knowlesi malaria will aid the interpretation of, often conflicting, information on malaria pathophysiology in humans

    Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography

    Get PDF
    Imaging methods applied to living organisms with emphasis on innovative approaches that use emerging technologies supported by rigorous physical and mathematical analysis and quantitative evaluation of performance. Membership in IEEE's technical societies provides access to top quality publications such as this one either as a member benefit or via discounted subscriptions. The lowest subscription prices for this title is available for members of the IEEE Engineering in Medicine and Biology Society, IEEE Signal Processing, IEEE Nuclear and Plasma Sciences Society, or the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society
    corecore